

Energy stores and systems

A system is an object or a group of objects.

These systems have energy.

Energy can be transferred between these stores of energy.

The energy stores are:

- Kinetic Movement
- Gravitational potential When an object is lifted up
- Thermal Stored as heat
- Vibrational Particles moving to and fro
- Electric and magnetic Stored when a charged particle is moved within an electric or magnetic field
- Nuclear Stored within the nucleus of an atom
- Chemical Stored within the bonds of atoms
- Elastic potential When an object is stretched

Examples

A ball thrown in the air

System - the ball

Energy stores - Kinetic energy \rightarrow Gravitational potential energy \rightarrow Kinetic energy

A car slowing down

System - The car

Energy stores - Kinetic energy \rightarrow Thermal energy (in the brakes)

Changes in energy

Energy can never be created or destroyed, only transferred.

Kinetic energy

[You need to remember this equation for the exam!]

Kinetic energy = $0.5 \times mass \times (speed)^2$

$$(E_k = \frac{1}{2}mv^2)$$

Kinetic energy - E_k - measured in Joules (J)

Mass - m - measured in kilograms (kg)

Speed - v - measures in meters per second (m/s)

Example

The mass of the cyclist is 80 kg. The speed of the cyclist is 12 m/s. Calculate the kinetic energy of the cyclist.

Step 1 - Write out the equation $E_k = \frac{1}{2}mv^2$ Step 2 - Write down what you know $E_k = ?$

m = 80kg

v = 10m/s

Step 3 - Put the numbers into the equation $E_{k} = \frac{1}{2} \times 80 \times 10^{2}$ Step 4 - Solve for E_{k} $E_{k} = \frac{1}{2} \times 80 \times 10^{2}$ $E_{k} = \frac{1}{2} \times 80 \times 100$ $E_{k} = \frac{1}{2} \times 8000$ $E_{k} = 4000J$

Elastic potential energy

[This equation is given in the exam] Elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$ $(E_e = \frac{1}{2}ke^2)$ Elastic potential energy - E_e - measured in Joules (J) Spring constant - k - measured in newtons per meter (N/m) Extension - e - measured in meters (m)

Example

At the lowest point in a jump when the student is stationary, the extension of the bungee cord is 35 metres.

....

The bungee cord behaves like a spring with a spring constant of 40 N / m.

Calculate the energy stored in the stretched bungee cord.

Use the correct equation from the Physics Equations Sheet.

Step 1 - Write out the equation Step 3 - Put the numbers into the equation
$E_e = \frac{1}{2}ke^2$ $E_e = \frac{1}{2} \times 40 \times 35^2$
Step 2 - Write down what you know Step 4 - Solve for E _e
$E_e = ? \qquad \qquad E_e = \frac{1}{2} \times 40 \times 35^2$
k = 40N/m
$e = 35m \qquad \qquad E_e = \frac{1}{2} \times 40 \times 1225$
$E_e = \frac{1}{2} \times 49000$
$E_e = 24500J$

Gravitational potential energy

[You need to remember this equation for the exam!]

Gravitational potential energy = mass × gravitational field strength × height

 $(E_g = mgh)$

Gravitational potential energy - Eg - measured in Joules (J)

Mass - m - measured in kilograms (kg)

Gravitational field strength - g - measured in newtons per kilogram (N/kg)

Height - h - measured in meters (m)

Example

A basket of apples with a mass of 9kg is lifted 1.2m off the ground onto a bench. What is the change in gravitational potential energy?

Assume gravity to be 9.8 N/kg

Step 1 - Write out the equation $E_g = mgh$ Step 2 - Write down what you know $E_g = ?$ m = 9kg g = 9.8N/kgh = 1.2m

Step 3 - Put the numbers into the equation $E_g = 9 \times 9.8 \times 1.2$ Step 4 - Solve for E_g $E_g = 9 \times 9.8 \times 1.2$ $E_g = 9 \times 11.76$ $E_g = 105.84J$

Energy changes in systems

Specific Heat Capacity (SHC) [This equation is given in the exam] Change in thermal energy store = mass × Specific heat capacity × temperature change ($\Delta E = mc\Delta\theta$) Change in thermal energy store - ΔE - measured in Joules (J) Mass - m - measured in kilograms (kg) Specific heat capacity - c - measured in Joules per kilogram per degree Celsius (J/kg°C) Temperature change - $\Delta\theta$ - measured in Degrees Celsius (°C)

Required Practical

- 1. Connect the equipment as shown in the diagram
- 2. Record the mass of the metal block
- 3. Take the initial temperature of the metal block
- 4. Ensure the Joule meter is on zero
- 5. Turn the power pack on for 10 minutes
- 6. Record the final temperature of the metal block
- 7. Calculate the change in temperature by taking the final temperature away from the initial temperature
- 8. Record the energy used on the Joule meter
- 9. Use the equation $c = \frac{\Delta E}{m\Delta \theta}$ to calculate the specific heat capacity of the metal

Example

The electric kettle shown below is used to boil water.

©leeser87/iStock

After the water has boiled, the temperature of the water decreases by 22 °C.

The mass of water in the kettle is 0.50 kg.

The specific heat capacity of water is 4200 J/kg $\,^\circ\text{C}.$

Calculate the energy transferred to the surroundings from the water.

Step 1 - Write out the equation	Step 3 - P
$\Delta E = mc\Delta\theta$	$\Delta E = 0.50$
Step 2 - Write down what you know	Step 4 - S
$\Delta E = ?$	$\Delta E = 0.50$
m = 0.50kg	$\Delta E = 2100$
$c = 4200J/kg^{\circ}C$	$\Delta E = 4620$
$\Delta\theta = 22^{o}C$	

Step 3 - Put the numbers into the equation

 $\Delta E = 0.50 \times 4200 \times 22$ **Step 4 - Solve for \Delta E** $\Delta E = 0.50 \times 4200 \times 22$ $\Delta E = 2100 \times 22$ $\Delta E = 46200J$

Power

"Power is defined as the rate at which energy is transferred or the rate at which work is done."

(J)

Power

[You need to remember these equations for the exam!]

$$power = \frac{energy transferred}{time}$$

$$P = \frac{E}{t}$$
Power - P - measured in watts (W)
Energy transferred - E - measured in Joules
Time - t - measured in seconds (s)
$$power = \frac{work \ done}{time}$$

$$P = \frac{W}{t}$$
Power - P - measured in watts (W)
Work done - W - measured in Joules (J)

Time - t - measured in seconds (s)

An energy transfer of 1 Joule per second is equal to 1 watt.

Example

The motor in a lift does 120 000 J of work in 8.0 seconds.

Calculate the power output of the motor in the lift.

P = ?

W=120000J

T = 8.0s

$$P = \frac{120000}{8.0}$$

 $P = 15000w$

